

djangorestframework-composed-permissions

A simple way to define complex permissions for django-rest-framework.

Introduction

django-rest-framework by default has large ways to define permissions but none of them
permits define a complex, multi depth and with logical operators permissions rules.

djangorestframework-composed-permissions is full compatible with a django-rest-framework
permissions api but implements a simple way to build permission objects using reusable
components (called permission components).

djangorestframework-composed-permissions has 3 type of classes:

	Permission components: a basic unit of permission.

	Permission set: a collection of components joined with logic operator (and, or & not)

	Composed permissions: container of both, components and sets having same interface
as django-rest-framework default permission.

How to install?

It is very simple, install it on your virtualenv with pip:

pip install djangorestframework-composed-permissions

Quickstart

The best way to understand how djangorestframework-composed-permissions works, is
looking some examples.

This package comes with some generic permission components defined for you, later
we will see how to define a own component but for the first example we go to use
one generic.

We go to define one permission and viewset that uses it:

from restfw_composed_permissions.base import (BaseComposedPermision, And, Or)
from restfw_composed_permissions.generics.components import (
 AllowAll, AllowOnlyAuthenticated, AllowOnlySafeHttpMethod)

class UserPermission(BaseComposedPermision):
 def global_permission_set(self):
 return Or(AllowOnlyAuthenticated,
 And(AllowAll, AllowOnlySafeHttpMethod))

 def object_permission_set(self):
 return AllowAll

class UserViewSet(viewsets.ModelViewSet):
 """
 A viewset for viewing and editing user instances.
 """
 permission_classes = (UserPermission,)

 serializer_class = UserSerializer
 queryset = User.objects.all()

Note

And & Or classes are permission sets, that groups some components with logical
operator. Also exists Not but we don’t use it on this example.

global_permission_set method must return a permission set or only one component, and it
is evaluted on every request, however object_permission_set is only evaluted when
a create, update, delete operation is executed.

With UserPermission defined on previous example, we allow any authenticated user
for do any thing and allow anonymous requests only if request method is safe.

Low level api reference

This is a low level api documentation for 3 main components of this package.

Permission Component

	
class restfw_composed_permissions.base.BasePermissionComponent

	
	
has_permission(self, permission, request, view)

	This method must be defined always, because it is used
on global permission evaluation process and it is executed
always on every request.

If you not implement this method, it will raise NotImplementedError
exception.

	Return type:	bool

	
has_object_permission(self, permission, request, view, obj)

	This method must be defined if this component will be used for object
permission checking.

By default, returns same thing as has_permission.

	Return type:	bool

You can see restfw_composed_permissions.generics.components for more examples
of how define own permission components.

Permission Sets

Permissions sets implement same interface as components. Permission sets groups
N number of components with logical operator, with exception of Not that has
special behavior and it accepts only one component as parameter.

And, Or & Not are the default permission sets defined on this package.

The usage of And example:

Simple usage as class instance
class SomePermission1(BaseComposedPermision):
 global_permission_set = (lambda s: And(Component1, Component2))

Using & operator of components
class SomePermission2(BaseComposedPermision):
 global_permission_set = (lambda s: Component1() & Component2())

The usage of Or examples:

Simple usage as class instance
class SomePermission1(BaseComposedPermision):
 global_permission_set = (lambda s: Or(Component1(some_param), Component2))

Using | operator of components
class SomePermission2(BaseComposedPermision):
 global_permission_set = (lambda s: Component1() | Component2())

Returning a list of components
class SomePermission3(BaseComposedPermision):
 global_permission_set = (lambda s: [Component1, Component2])

Finally, Not usage examples:

Simple usage as class instance
class SomePermission1(BaseComposedPermision):
 global_permission_set = (lambda s: Not(Component1))

Using ~ operator of components
class SomePermission2(BaseComposedPermision):
 global_permission_set = (lambda s: ~Component1())

Composed Permission

This is a toplevel class of 3 main components of this package.

	
class restfw_composed_permissions.base.BaseComposedPermision

	Any subclass of this must define global_permission_set as mandatory
method and optionally object_permission_set method.

These methods must return a BasePermissionComponent subclass
or BasePermissionSet subclass.

Generics

Components

	
class restfw_composed_permissions.generic.components.AllowAll

	Always allow all requests without any constraints.

	
class restfw_composed_permissions.generic.components.AllowOnlyAnonymous

	Only allow anonymous requests.

	
class restfw_composed_permissions.generic.components.AllowOnlyAuthenticated

	Only allow authenticated requests.

	
class restfw_composed_permissions.generic.components.AllowOnlySafeHttpMethod

	Only allow safe http methods.

	
class restfw_composed_permissions.generic.components.ObjectAttrEqualToObjectAttr

	This is a object level permision component and if is used on
global permission context it always returns True.

This component checks the equality of two expressions that are
evaluted in “safe” way. On the context of eval are exposed “obj”
as current object and “request” as the current request.

This component works well for check a object owner os similary.

Example:

class SomePermission(BaseComposedPermision):
 global_permission_set = (lambda self: AllowAll)
 object_permission_set = (lambda self:
 ObjectAttrEqualToObjectAttr("request.user", "obj.owner"))

Index

 H
 | R

H

 	
 	has_object_permission() (restfw_composed_permissions.base.BasePermissionComponent method)

 	
 	has_permission() (restfw_composed_permissions.base.BasePermissionComponent method)

R

 	
 	restfw_composed_permissions.base.BaseComposedPermision (built-in class)

 	restfw_composed_permissions.base.BasePermissionComponent (built-in class)

 	restfw_composed_permissions.generic.components.AllowAll (built-in class)

 	
 	restfw_composed_permissions.generic.components.AllowOnlyAnonymous (built-in class)

 	restfw_composed_permissions.generic.components.AllowOnlyAuthenticated (built-in class)

 	restfw_composed_permissions.generic.components.AllowOnlySafeHttpMethod (built-in class)

 	restfw_composed_permissions.generic.components.ObjectAttrEqualToObjectAttr (built-in class)

 nav.xhtml

 Table of Contents

 		djangorestframework-composed-permissions

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

